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Abstract

Magnetic Resonance Imaging (MRI) is a critical medi-
cal imaging technique that provides detailed anatomical in-
formation without harmful radiation. However, the lengthy
acquisition time of fully-sampled MRI scans presents sig-
nificant challenges in clinical settings. In this paper, we
address the problem of accelerated MRI reconstruction
from undersampled k-space data using deep learning ap-
proaches. We propose a hybrid architecture that combines
the strengths of U-Net with the Swin Transformer to effec-
tively capture both local features and global dependencies
in MRI images. Our approach involves a systematic com-
parison of multiple architectures, including baseline U-Net,
Transformer at bottleneck (BT), and SwinUNet, followed by
extensive hyperparameter tuning. Experimental results on
the fastMRI single-coil knee dataset demonstrate that our
optimized SwinUNet model achieves superior performance
with a PSNR of 33.1 dB and SSIM of 0.72, outperform-
ing the baseline U-Net by approximately 4 dB in PSNR and
maintaining more stable SSIM values. These improvements
translate to enhanced image quality with better preserva-
tion of anatomical details, potentially enabling faster MRI
acquisition without sacrificing diagnostic value.

1. Introduction

Magnetic Resonance Imaging (MRI) stands as one of
the most valuable non-invasive medical imaging techniques,
providing exceptional soft tissue contrast and detailed
anatomical information without exposing patients to ioniz-
ing radiation. Despite these advantages, MRI suffers from
inherently long acquisition times, often requiring patients
to remain motionless for extended periods. This limitation
not only reduces patient comfort and scanner throughput but
can also lead to motion artifacts that degrade image qual-
ity. Additionally, lengthy scan times increase healthcare
costs and limit MRI accessibility in resource-constrained

settings.
To address these challenges, accelerated MRI techniques

have been developed that undersample k-space (the raw fre-
quency domain data collected by MRI scanners) to reduce
acquisition time. However, this undersampling introduces
artifacts and distortions in the reconstructed images when
conventional reconstruction methods are used. The fun-
damental challenge lies in reconstructing high-quality, di-
agnostically valuable images from this incomplete k-space
data.

Traditional approaches to this problem include parallel
imaging techniques like SENSE and GRAPPA, and com-
pressed sensing methods. While these approaches have
shown promise, they often suffer from lengthy reconstruc-
tion times, increased noise, or dependence on specific sam-
pling patterns. More recently, deep learning-based methods
have emerged as powerful alternatives, demonstrating supe-
rior performance in terms of both reconstruction quality and
speed.

In this paper, we investigate a hybrid deep learning ar-
chitecture for accelerated MRI reconstruction that combines
the strengths of convolutional neural networks (CNNs) and
transformer models. Our approach builds upon the widely-
used U-Net architecture, which has proven effective for
image-to-image tasks, by incorporating transformer com-
ponents to better capture long-range dependencies in the
image data. Specifically, we explore and compare several
architectural variants, including a baseline U-Net, a U-Net
with transformer blocks at the bottleneck (BT), and a Swin-
UNet that integrates the hierarchical Swin Transformer de-
sign.

Our contributions can be summarized as follows:

• We systematically evaluate multiple deep learning ar-
chitectures for accelerated MRI reconstruction, includ-
ing U-Net, transformer-augmented U-Net, and Swin-
UNet.

• We demonstrate that the SwinUNet architecture
achieves superior performance compared to the base-
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line U-Net, with approximately 4 dB improvement in
PSNR and more stable SSIM values.

• We conduct extensive hyperparameter tuning and ab-
lation studies to optimize model performance and pre-
vent overfitting.

• We provide a comprehensive analysis of the trade-offs
between different architectural choices and their im-
pact on reconstruction quality.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses related work in accelerated MRI recon-
struction. Section 3 describes the fastMRI dataset and our
data preprocessing pipeline. Section 4 details our technical
approach, including the baseline U-Net and our proposed
SwinUNet architecture. Section 5 presents experimental re-
sults and comparisons. Finally, Section 6 concludes the pa-
per and suggests directions for future work.

2. Related Work
Accelerated MRI reconstruction has been an active area

of research for decades, with approaches evolving from tra-
ditional signal processing methods to advanced deep learn-
ing techniques. Here, we review key developments in this
field, focusing on deep learning-based approaches that are
most relevant to our work.

2.1. Traditional Reconstruction Methods

Conventional approaches to accelerated MRI reconstruc-
tion include parallel imaging techniques such as SENSE
[11] and GRAPPA [3], which leverage data from multiple
receiver coils. Compressed sensing methods [10] exploit
the sparsity of MRI images in appropriate transform do-
mains to recover images from undersampled data. While
these methods have been widely adopted in clinical prac-
tice, they often suffer from lengthy reconstruction times, in-
creased noise levels, and reliance on specific sampling pat-
terns or calibration data.

2.2. Deep Learning for MRI Reconstruction

The application of deep learning to MRI reconstruction
began with simple CNN architectures. Hammernik et al.
[4] proposed a variational network that unrolls the optimiza-
tion process of a variational model. Schlemper et al. [12]
introduced a cascade of CNNs that operate in both image
and data domains. The fastMRI challenge [13] accelerated
progress in this field by providing a large-scale dataset and
standardized evaluation metrics.

U-Net-based architectures have emerged as particularly
effective for MRI reconstruction. Hyun et al. [6] adapted
the U-Net for k-space completion, while Lee et al. [7] pro-
posed a deep residual learning approach using U-Net. The
U-Net’s ability to capture multi-scale features through its

encoder-decoder structure with skip connections makes it
well-suited for preserving both fine details and global con-
text in reconstructed images.

2.3. Transformer-Based Approaches

More recently, transformer models, which were orig-
inally developed for natural language processing tasks,
have been adapted for computer vision applications, in-
cluding medical image analysis. Vision Transformers (ViT)
[2] demonstrated that pure transformer architectures could
achieve competitive performance on image classification
tasks. This success has inspired various transformer-based
approaches for medical image segmentation and reconstruc-
tion.

Lin and Heckel [8] showed that Vision Transformers can
match U-Net performance for accelerated MRI while reduc-
ing computational requirements. Huang et al. [5] proposed
a Swin Deformable Attention U-Net Transformer (SDAUT)
that combines the strengths of both CNNs and transform-
ers for explainable fast MRI reconstruction. These hybrid
approaches leverage the local feature extraction capabilities
of CNNs and the long-range dependency modeling of trans-
formers.

2.4. Swin Transformer and SwinUNet

The Swin Transformer [9] introduced a hierarchical ar-
chitecture with shifted windows that efficiently models both
local and global dependencies. This design addresses the
quadratic computational complexity of standard transform-
ers with respect to image size, making it more practical for
high-resolution medical images. Building on this, Cao et
al. [1] proposed SwinUNet, which adapts the Swin Trans-
former for medical image segmentation in a U-Net-like
encoder-decoder structure.

Our work builds upon these advances by adapting and
optimizing the SwinUNet architecture specifically for the
task of accelerated MRI reconstruction. Unlike previous ap-
proaches that either use transformers as a complete replace-
ment for CNNs or only at specific points in the network, our
method systematically evaluates different integration strate-
gies and identifies the optimal configuration for MRI recon-
struction.
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3. Data

Figure 1. Raw and Undersampled Knee MRI Data

3.1. Dataset Description

Split Volumes/Middle Slices
Training 973
Validation 199

Table 1. Dataset statistics for the single-coil knee MRI reconstruc-
tion task.

For this study, we utilized the fastMRI dataset [13], a
large-scale collection of MRI data specifically designed for
machine learning approaches to MR image reconstruction.
The dataset contains both raw k-space measurements and
clinical MR images from knee and brain MRI scans. We
focused exclusively on the single-coil knee MRI subset to
reduce complexity while still addressing a clinically rele-
vant reconstruction problem.

The fastMRI knee dataset includes two types of contrast
mechanisms: Proton Density weighted without fat suppres-
sion (PD) and with fat suppression (PDFS). Both acquisi-
tion types were included in our experiments to ensure model
generalization across different contrast settings. Following
the official fastMRI data split, we used 973 volumes for
training and 199 volumes for validation, as shown in Table
1.

From each volume, we extracted the middle slice (cal-
culated by dividing the k-space shape by 2). This decision
was motivated by several factors:

• The middle slice typically contains substantial anatom-
ical information and is representative of the volume’s
content

• It provides a consistent anatomical reference point
across different scans

• It reduces computational requirements while still pre-
serving the core image reconstruction challenge

3.2. Data Pre-processing Pipeline

Our data pre-processing workflow consisted of the fol-
lowing steps:

1. K-space Data Loading: We loaded the complex-
valued k-space data from the h5 files using the h5py
library.

2. Middle Slice Extraction: We identified and extracted
the middle slice from each volume.

3. K-space to Tensor Conversion: We converted the
NumPy complex arrays to PyTorch tensors using
fastMRI’s transformation utilities (T.to tensor).

4. Undersampling: To simulate accelerated MRI acqui-
sition, we retrospectively undersampled the k-space
data using the fastMRI RandomMaskFunc with a cen-
ter fraction of 0.08 and an acceleration factor of 4.
This ensures the central 8% of k-space lines are fully
sampled (preserving low-frequency information criti-
cal for image contrast), while the remaining lines are
randomly sampled.

5. Image Reconstruction: For undersampled data,
we performed an inverse Fast Fourier Transform
(fastmri.ifft2c) followed by computing the absolute
value (fastmri.complex abs) to obtain the zero-filled
reconstructions.

6. Normalization: All images were normalized by di-
viding by the maximum value provided in the meta-
data for each scan to ensure consistent intensity ranges
across the dataset.

7. Center Cropping: Both input and target images were
center-cropped to 320×320 pixels to remove readout
and phase oversampling, matching the standard proto-
col in the fastMRI dataset.

3.3. Efficient Data Handling

To efficiently handle the data during training, we im-
plemented a custom PyTorch Dataset class that processes
the fastMRI data on-the-fly. Additionally, we created a
pre-processing pipeline that saved processed datasets to
disk, significantly reducing data loading time during train-
ing while maintaining the flexibility to apply different un-
dersampling patterns.
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3.4. Data Visualization

Figure 1 illustrates the core challenge addressed in our
work: the recovery of high-quality MRI images from under-
sampled k-space data. The undersampled data demonstrates
coherent artifacts that significantly impair diagnostic qual-
ity. These artifacts are particularly problematic as they can
obscure important anatomical boundaries and small patho-
logical features.

4. Methods

4.1. Problem Formulation

The accelerated MRI reconstruction problem can be for-
mulated as recovering a high-quality image x from under-
sampled k-space measurements y = M ⊙ F(x), where F
represents the Fourier transform, M is a binary mask in-
dicating which k-space points are sampled, and ⊙ denotes
element-wise multiplication. The goal is to learn a map-
ping function fθ parameterized by θ such that x̂ = fθ(y

′)
approximates the fully-sampled image x as closely as pos-
sible, where y′ is the zero-filled reconstruction obtained by
applying the inverse Fourier transform to the undersampled
k-space data.

4.2. Baseline U-Net Architecture

Our baseline approach uses a standard U-Net architec-
ture, which has been widely adopted for medical image re-
construction tasks. The U-Net consists of an encoder path
that captures context and a decoder path that enables precise
localization, with skip connections between corresponding
encoder and decoder layers to preserve spatial information.

The encoder is composed of a series of convolutional
blocks followed by max-pooling operations. We use 4 pool
layers for the downsampling stages, where the initial num-
ber of feature channels is set to 32, and this number doubles
after each downsampling step. Each convolutional block
consists of two 3×3 convolutional layers followed by In-
stanceNorm2d for feature normalization and a LeakyReLU
activation function.

At the bottleneck, a convolution block further processes
the features, doubling the channel count from the last layer.
The decoder path symmetrically mirrors the encoder, us-
ing 4 max unpooling layers. Each stage begins with a 2×2
ConvTranspose2d layer to upsample the feature maps, halv-
ing the number of channels. The upsampled feature maps
are then concatenated with the corresponding feature maps
from the encoder path via skip connections.

After the final upsampling stage, a 1×1 convolutional
layer maps the feature channels to a single output chan-
nel, producing the reconstructed grayscale MRI. This archi-
tecture effectively learns to remove undersampling artifacts
while preserving anatomical details.

4.3. Transformer at Bottleneck (BT) Architecture

Building upon the baseline U-Net, we explored a hybrid
architecture that incorporates transformer blocks at the bot-
tleneck of the U-Net. This approach aims to leverage the
global context modeling capabilities of transformers while
maintaining the efficient local feature extraction of CNNs.

The architecture is structured as follows:

1. U-Net Encoder: Standard convolutional blocks and
max-pooling layers process the input undersampled
MR image, producing a bottleneck feature map Fenc ∈
RC×H′×W ′

.

2. Tokenization & Positional Encoding: Fenc is flat-
tened into N = H ′ × W ′ tokens, each of dimension
C. Learnable 1D positional embeddings are added to
these tokens to retain spatial information before input
to the Transformer.

3. Transformer Encoder Block: The sequence of to-
kens is processed by LT standard Transformer en-
coder layers (e.g., LT = 2 − 6). Each layer
consists of Multi-Head Self-Attention (MHSA) using
torch.nn.MultiheadAttention (e.g., NH = 4−8 heads)
and a position-wise Feed-Forward Network (FFN),
with residual connections and layer normalization.

4. De-Tokenization & U-Net Decoder: The Trans-
former’s output sequence is reshaped back to Ftrans ∈
RC×H′×W ′

. This globally-aware feature map is then
fed into the U-Net’s decoder, which upsamples it and
combines it with encoder features via skip connections
to reconstruct the final image.

This hybrid approach allows the network to capture long-
range dependencies at the bottleneck while maintaining the
computational efficiency of the U-Net architecture for the
majority of the processing.

4.4. SwinUNet Architecture

After initial experiments with the BT architecture, we
identified the SwinUNet as a more promising approach.
SwinUNet adapts the hierarchical Swin Transformer design
to a U-Net-like encoder-decoder structure, offering several
advantages for MRI reconstruction:

1. Hierarchical Feature Representation: The Swin
Transformer’s hierarchical design naturally aligns with
the multi-scale feature extraction paradigm of U-Net.

2. Shifted Window Attention: Instead of global self-
attention, which is computationally expensive, Swin
Transformer uses shifted window-based self-attention.
This approach computes self-attention within local
windows and shifts the window partitioning between
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consecutive layers, enabling connections across win-
dows while maintaining computational efficiency.

3. Linear Complexity: The window-based attention
mechanism reduces the computational complexity
from quadratic to linear with respect to image size,
making it feasible to process high-resolution medical
images.

Our SwinUNet implementation consists of:

1. Patch Embedding: The input image is divided into
non-overlapping patches and projected to a higher-
dimensional feature space.

2. Encoder: A series of Swin Transformer blocks with
patch merging layers that progressively reduce spatial
resolution while increasing feature dimension.

3. Bottleneck: Swin Transformer blocks that process the
most abstract features.

4. Decoder: A series of Swin Transformer blocks with
patch expanding layers that progressively increase spa-
tial resolution while decreasing feature dimension.

5. Skip Connections: Feature maps from the encoder are
concatenated with corresponding decoder features to
preserve spatial details.

6. Output Projection: The final feature map is projected
back to the image space to produce the reconstructed
MRI.

4.5. Training Strategy

All models were trained using the following strategy:

1. Loss Function: We used a combination of L1 loss and
SSIM loss to optimize both pixel-wise accuracy and
structural similarity: L = λ1LL1 + λ2(1 − LSSIM )
where λ1 and λ2 are weighting factors.

2. Optimizer: We employed the Adam optimizer with a
learning rate ranging from 1e-5 to 1e-3, depending on
the specific architecture.

3. Learning Rate Scheduling: A cosine annealing learn-
ing rate scheduler was used to gradually reduce the
learning rate during training.

4. Regularization: To prevent overfitting, we applied
weight decay (1e-4 to 1e-5) and dropout in transformer
layers.

5. Data Augmentation: Random flips and rotations were
applied to increase the effective size of the training
dataset and improve model generalization.

6. Batch Size: We used batch sizes ranging from 4 to 16,
depending on model complexity and available GPU
memory.

7. Training Duration: Models were trained for 50-60
epochs, with early stopping based on validation loss to
prevent overfitting.

5. Experiments

5.1. Experimental Setup

We conducted a series of experiments to evaluate and
compare different architectural variants and hyperparame-
ter configurations. All experiments were performed using
PyTorch on NVIDIA GPUs. The models were evaluated
using three metrics:

1. Peak Signal-to-Noise Ratio (PSNR): Measures the
pixel-wise accuracy of the reconstruction.

2. Structural Similarity Index (SSIM): Assesses the
preservation of structural information.

3. Validation Loss: The combined L1 and SSIM loss on
the validation set.

5.2. Baseline U-Net Results

Figure 2. Training progression of the baseline U-Net model over
60 epochs, showing: (a) Training and Validation Loss curves (left);
(b) Validation PSNR (center); and (c) Validation SSIM (right).

We first established a baseline using the standard U-Net
architecture. Figure 2 shows the training progression of the
baseline U-Net model over 60 epochs.

The learning curves show a steady decrease in both train-
ing and validation loss, with the validation loss closely
tracking the training loss, indicating effective learning and
good generalization without significant overfitting. The val-
idation loss stabilized near 0.0526 by epoch 50.

Concurrently, validation PSNR increased from approxi-
mately 23 dB to a final value of 28.03 dB, while SSIM im-
proved from around 0.62 to 0.6935. These trends confirm
the model’s ability to enhance reconstruction fidelity and
structural similarity, with the best performance achieved at
the final epoch.
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5.3. SwinUNet Hyperparameter Tuning

Figure 3. Training progression of the optimized SwinUNet model
over 50 epochs, showing: (a) Training and Validation Loss curves
(left); (b) Validation PSNR (center); and (c) Validation SSIM
(right).

Based on the promising results of the SwinUNet archi-
tecture, we conducted extensive hyperparameter tuning to
optimize its performance. We explored variations in:

1. Base Feature Dimension: We tested base feature di-
mensions of 64 and 80.

2. Window Size: We experimented with window sizes of
7 and 8 for the shifted window attention.

3. Learning Rate: We tried learning rates ranging from
5e-5 to 8e-5.

4. Head Dimension: We varied the dimension per atten-
tion head from 8 to 10.

5. Batch Size: We tested batch sizes of 4 and 6.

Figure 4 shows the training progression of our best-
performing SwinUNet model.

The optimized SwinUNet model demonstrated more sta-
ble training dynamics compared to the baseline U-Net, with
smoother learning curves and less fluctuation in validation
metrics. The model achieved a final PSNR of 33.10 dB
and SSIM of 0.7274, representing substantial improvements
over the baseline.

5.4. Architecture Comparison

After establishing the baseline, we compared the perfor-
mance of different architectural variants: the baseline U-
Net, the Transformer at Bottleneck (BT) model, and the
SwinUNet. Table 2 summarizes the results.

Architecture Val. Loss PSNR (dB) SSIM
U-Net Baseline 0.0496 28.03 0.6935
BT-UNet 0.0412 29.87 0.7102
SwinUNet 0.0352 33.10 0.7274

Table 2. Performance comparison of different architectural vari-
ants.

The SwinUNet architecture significantly outperformed
both the baseline U-Net and the BT-UNet, achieving ap-
proximately 4 dB higher PSNR and better SSIM values.
This improvement can be attributed to the SwinUNet’s abil-
ity to effectively capture both local and global image fea-
tures through its hierarchical structure and shifted window
attention mechanism.

5.5. Ablation Studies

To understand the contribution of different components
and design choices, we conducted several ablation studies:

1. Effect of Window Size: Increasing the window size
from 7 to 8 improved performance by allowing the
model to capture slightly larger contextual regions in
each attention operation.

2. Impact of Base Feature Dimension: Increasing the
base feature dimension from 64 to 80 slightly de-
creased performance while significantly increasing
computational requirements, suggesting that 64 pro-
vides a good balance between model capacity and effi-
ciency.

3. Learning Rate Sensitivity: We found that the Swin-
UNet was more sensitive to learning rate than the base-
line U-Net, with optimal performance achieved at a
learning rate of 8e-5.

4. Data Augmentation: Removing data augmentation
led to faster initial convergence but poorer generaliza-
tion, confirming the importance of augmentation for
preventing overfitting.

5.6. Model Efficiency

Model Parameters (M) Inference Time (ms)
U-Net Baseline 7.8 18.5
SwinUNet-64 27.3 42.7
SwinUNet-80 42.6 56.3

Table 3. Comparison of model size and inference time.

While the SwinUNet achieves superior reconstruction
quality, it comes with increased computational require-
ments compared to the baseline U-Net. Table 3 compares
the model sizes and inference times.

Despite the increased computational cost, the Swin-
UNet’s inference time remains practical for clinical applica-
tions, where reconstruction quality is often prioritized over
speed once a certain threshold of efficiency is met.

5.7. Qualitative Results

Beyond quantitative metrics, we visually assessed the re-
construction quality of different models. Figure 4 shows
example reconstructions from the validation set.
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Figure 4. Visual results of the optimized SwinUNet model over
50 epochs, showing: (a) Raw Under-sampled Data(left); (b) Swin-
UNet reconstruction (center); and (c) Ground Truth Fully-sampled
Data (right).

The SwinUNet reconstructions demonstrate superior
preservation of fine anatomical details compared to the
baseline U-Net. Particularly notable is the improved defini-
tion of cartilage boundaries, meniscal structures, and bone
margins. The SwinUNet also more effectively removes the
coherent streaking artifacts that are characteristic of under-
sampled MRI reconstruction, resulting in images that more
closely resemble the fully-sampled ground truth.

6. Conclusion
In this paper, we presented a comprehensive study of

deep learning architectures for accelerated MRI reconstruc-
tion, with a focus on integrating transformer components
to enhance reconstruction quality. Our experiments demon-
strate that the SwinUNet architecture significantly outper-
forms the baseline U-Net, achieving approximately 4 dB
higher PSNR and more stable SSIM values.

The superior performance of SwinUNet can be attributed
to its ability to effectively model both local and global im-
age features through its hierarchical structure and shifted
window attention mechanism. This enables better removal
of undersampling artifacts while preserving fine anatomical
details that are crucial for diagnostic purposes.

Our work contributes to the growing body of evidence
supporting the effectiveness of transformer-based architec-
tures for medical image analysis tasks. By systematically
comparing different architectural variants and conducting
extensive hyperparameter tuning, we provide valuable in-
sights for researchers and practitioners working on acceler-
ated MRI reconstruction.

6.1. Limitations and Future Work

Despite the promising results, our study has several lim-
itations that point to directions for future work:

1. Single-Coil Focus: We focused exclusively on single-
coil MRI reconstruction. Extending our approach to
multi-coil data would be a natural next step.

2. Fixed Acceleration Factor: We used a fixed accelera-
tion factor of 4. Future work could explore the model’s
performance across different acceleration factors and
sampling patterns.

3. Computational Efficiency: While the SwinUNet
achieves superior reconstruction quality, its computa-
tional requirements are higher than the baseline U-Net.
Further optimization of the architecture for improved
efficiency would be valuable.

4. Clinical Validation: Although we used standard
quantitative metrics for evaluation, clinical validation
with radiologists would provide more insight into the
diagnostic value of the reconstructed images.

In future work, we plan to address these limitations and
explore additional architectural innovations, such as inte-
grating frequency-domain learning and incorporating un-
certainty estimation to provide confidence measures for the
reconstructions.
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