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Abstract

Music is something everyone can feel. Defining such feelings to a universal standard has
proved difficult, and as a result, we have classified music by genre. It goes without say-
ing that the expectation is for a genre to yield similar ”feelings” of music, and to a large
extent that is true. However, what if we were to expand our horizon and look at music
from a more analytical point of view? What if our classification became based on features
like valence, energy, and tempo? Would such a classification result in similar genre-based
definitions, or would the classification of music be revamped? This project uses singu-
lar value decomposition (SVD) to discover latent features in a data set of songs, create a
weighted recommendation system based on reduced-dimensionality musical features, and
explore emerging classifications of music.
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1 Dataset

The dataset consists of songs extracted from Spotify with the following audio features:

• Danceability

• Energy

• Speechiness

• Acousticness

• Instrumentalness

• Liveness

• Valence

• Loudness

• Tempo

These features are normalized using z-score normalization to ensure that all features con-
tribute equally to the similarity calculations:

z =
x− µ

σ
(1)

where x is the original feature value, µ is the mean of the feature, and σ is the standard
deviation.

Figure 1: Example tracks from the Spotify dataset with audio features

2 SVD for Feature Projection

2.1 Mathematical SVD Background

Singular Value Decomposition (SVD) is a powerful matrix factorization technique that decom-
poses a matrix into three component matrices. For any matrix A of dimensions m × n, SVD
expresses it as:

A = UΣV T

Where:

• U is an m×m orthogonal matrix containing the left singular vectors

• Σ is an m× n diagonal matrix containing the singular values in descending order

• V T is the transpose of an n× n orthogonal matrix containing the right singular vectors
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To understand how these matrices are computed, we start with the matrix ATA, which is always
symmetric. The spectral theorem guarantees that any symmetric matrix has an orthonormal
basis of eigenvectors, which allows us to write:

ATAvi = σ2
i vi

where vi are the eigenvectors and σ2
i are the eigenvalues of ATA. These vi vectors form the

columns of matrix V .

For the left singular vectors, we observe that when we multiply A by vi:

Avi = σiui

where ui =
Avi
σi

if σi ̸= 0. These ui vectors are orthonormal and form the columns of matrix U .
If the rank of A is r, then only the first r singular values σi are positive, while the rest are zero.
This gives us the complete decomposition:

A = UΣV T =
r∑

i=1

σiuiv
T
i

The singular values are arranged in descending order: σ1 ≥ σ2 ≥ . . . ≥ σr > 0.
This decomposition provides us with orthonormal bases for fundamental subspaces of A:

• The columns of V corresponding to non-zero singular values form an orthonormal basis
for the row space of A

• The columns of U corresponding to non-zero singular values form an orthonormal basis
for the column space of A

These orthonormal bases are what make SVD ideal for dimensionality reduction and projection.

2.2 Why Feature Projection Matters

When we analyze music using audio features like danceability, energy, and tempo, we’re working
with high-dimensional data that may contain noise. Features that may not be so significant
can influence our song recommendations. To combat this we can use feature projection through
SVD, which allows us to discover latent features—underlying patterns that aren’t explicitly
represented in the original data.

These projected features can capture musical characteristics more meaningful than individual
audio metrics. For example, rather than considering danceability and energy separately, a pro-
jected feature might represent a combination that corresponds to ”club-worthiness” or ”workout
intensity.” In mathematical terms this corresponds to a linear combination of features for pro-
jection. In our case, by using SVD, we essentially create a linear combination that acts as a
weighting system where the coefficients are based on the strength of the singular values. For
example:

Projected Feature1 = 0.7× danceability + 0.6× energy− 0.3× acousticness + 0.2× tempo

The orthonormal basis provided by SVD ensures that each latent feature captures a unique,
uncorrelated aspect of musical variation. This creates a more efficient representation of musical
similarity that better aligns with human perception.
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2.3 Projection Implementation

To implement feature projection, I first compute the SVD of our audio features matrix. I then
select the top k components that capture the most variance in the data, typically choosing a
value much smaller than the original feature dimension works best (in our case, k = 5). The
projection is calculated as:

Bk = B · Vk

Where:

• B is the original audio features matrix

• Vk is the matrix containing the first k columns of V

• Bk is the projected representation of songs in the reduced k-dimensional space

This projection operation maps songs from their original feature space onto the orthonormal
basis defined by the top k right singular vectors. It may seem strange that we claim projection
but seem to perform matrix-vector multiplication, but the following shows that in our case they
are equivalent.

When projecting a vector v onto an orthonormal basis {w1,w2, . . . ,wk}, the standard projec-
tion formula is:

proj{w1,...,wk}(v) = (v ·w1)w1 + (v ·w2)w2 + · · ·+ (v ·wk)wk

Or in summation form:

k∑
i=1

(v ·wi)wi

If we treat all vectors wi as columns of a matrix W , we can rewrite the dot products as a matrix
multiplication. When v is treated as a row vector and multiplied by W :

v ×W = [(v ·w1), (v ·w2), . . . , (v ·wk)]

This gives us the coordinates of v in the basis {wi}. For our feature projection, these coordinates
represent our songs in the reduced latent feature space.
Thus, for our entire dataset B, the projection simplifies to:

Bk = B · Vk

The k value is chosen based on the singular values in Σ, which indicate how much variance each
component explains. We select enough components to capture a substantial portion of the total
variance while still achieving significant dimensionality reduction.

Finally, I use cosine similarity to rank the projections and take the top similarities. (Further
Elaboration in 3.3).
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2.4 Geometric Visualization

Figure 2: Projection of songs into latent feature space using SVD

The figure demonstrates the benefits of SVD-based dimensionality reduction in the context
of our music recommendation system. Here, we can see songs projected from their original
9-dimensional space (danceability, energy, acousticness, etc.) into a 3-dimensional space discov-
ered through SVD.

The red dots represent songs from the R&B playlist, while the gray dots show the entire song
database. Notice how the R&B songs form distinct clusters within this reduced space, revealing
patterns that weren’t clear in the original high-dimensional representation.

Each axis in this visualization represents a feature - a linear combination of the original audio
features. The proximity of songs in this reduced space directly informs our recommendation
algorithm. Calculating the cosine similarity between song vectors in this latent space com-
pares them based on these discovered musical patterns rather than raw features, resulting in
recommendations that better capture the feel of the music.

3 Recommendation Approaches

3.1 One-Per-Song Method

The One-Per-Song method is a recommendation strategy that prioritizes diversity by finding
one similar song for each track in the input playlist. This approach ensures that each song
in the original playlist contributes to the final recommendations, regardless of how similar or
dissimilar it might be to other songs. The algorithm works as follows:

1. For each song in the input playlist, compute its similarity with all songs in the database

2. Sort these similarities in descending order

3. Select the most similar song that hasn’t already been added to the recommendations

4. Add this song to the recommendation list

5. Continue until we have one recommendation for each input song
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3.2 Overall Top Method

The Overall Top method takes a more global approach to recommendation by finding songs with
the highest similarity scores across the entire input playlist. Instead of ensuring each input song
contributes, this method identifies the most similar songs overall.
The algorithm proceeds as follows:

1. Calculate similarities between every input song and every database song

2. Collect all these similarity scores into a single list

3. Sort the list by similarity score in descending order

4. Select the top songs, avoiding duplicates

5. Return the resulting recommendation list

3.3 Comparison of Methods

While both comparison methods make use of the same SVD and Feature-Projection algorithm,
they do offer tradeoffs.

• Diversity vs. Similarity: One-Per-Song ensures diversity at the potential cost of in-
cluding some less similar songs, while Overall Top maximizes similarity at the risk of
lacking variety.

• Playlist Coherence: Overall Top tends to produce more coherent recommendations that
strongly match the dominant elements of the input playlist.

The optimal approach depends on the user’s intent. One-Per-Song works better for diverse
input playlists where users want to explore variations of each song. Overall Top is better for
focused playlists where users want more of exactly what dominates their current selection.

4 Example

4.1 Example Input Playlist

To demonstrate our recommendation system, we can utilize a initial playlist of songs. This
initial selection serves as the base for our algorithm to identify and recommend music with
similar characteristics and mood.

Input Playlist
Song: No Love (with SZA), Artist: Summer Walker, SZA
Song: Slime You Out (feat. SZA), Artist: Drake, SZA
Song: Just Us (feat. SZA), Artist: DJ Khaled, SZA
Song: Kill Bill (feat. Doja Cat), Artist: SZA, Doja Cat
Song: What Lovers Do (feat. SZA), Artist: Maroon 5, SZA
Song: The Weekend - Funk Wav Remix, Artist: SZA, Calvin Harris, Funk Wav
Song: What Lovers Do (feat. SZA), Artist: Maroon 5, SZA
Song: Love Galore (feat. Travis Scott), Artist: SZA, Travis Scott
Song: All The Stars (with SZA), Artist: Kendrick Lamar, SZA
Song: Kill Bill, Artist: SZA
Song: Saturn, Artist: SZA
Song: Love Language, Artist: SZA
Song: I Do (feat. SZA), Artist: Cardi B, SZA
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Song: TELEKINESIS (feat. SZA & Future), Artist: Travis Scott, SZA, Future
Song: Rich Baby Daddy (feat. Sexyy Red & SZA), Artist: Drake, Sexyy Red, SZA
Song: Blind, Artist: SZA
Song: Low, Artist: SZA
Song: All The Stars (with SZA), Artist: Kendrick Lamar, SZA
Song: Gone Girl, Artist: SZA
Song: I Hate U, Artist: SZA
Song: F2F, Artist: SZA

4.2 SVD Analysis and Feature Interpretation

Before we get to the the recommendations, let’s examine how our SVD analysis decomposes the
audio features into patterns:

Top Singular Values:

• Singular value 1: 126.85

• Singular value 2: 89.32

• Singular value 3: 85.21

• Singular value 4: 80.53

• Singular value 5: 79.57

Latent Feature Linear Combinations:

Latent Feature 1:

0.279× danceability + 0.545× energy + 0.055× speechiness− 0.427× acousticness− 0.155×
instrumentalness + 0.081× liveness + 0.354× valence + 0.526× loudness + 0.086× tempo

Latent Feature 2:

−0.602× danceability + 0.264× energy− 0.566× speechiness− 0.093× acousticness + 0.176×
instrumentalness + 0.269× liveness− 0.282× valence + 0.234× loudness− 0.015× tempo

Latent Feature 3:

−0.228× danceability + 0.039× energy + 0.542× speechiness− 0.114× acousticness + 0.103×
instrumentalness + 0.392× liveness− 0.190× valence− 0.079× loudness + 0.658× tempo

Latent Feature 4:

−0.006× danceability + 0.042× energy− 0.128× speechiness− 0.192× acousticness + 0.321×
instrumentalness− 0.784× liveness− 0.149× valence + 0.059× loudness + 0.449× tempo

Latent Feature 5:

−0.253× danceability− 0.064× energy− 0.133× speechiness + 0.212× acousticness− 0.847×
instrumentalness− 0.189× liveness + 0.028× valence + 0.095× loudness + 0.327× tempo

These equations represent what linear combinations our algorithm deemed best to provide
recommendations based upon.
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• Latent Feature 1 can be interpreted as an ”energy-loudness” dimension, with strong
positive weights for energy (0.545) and loudness (0.526), contrasted with negative weights
for acousticness (-0.427).

• Latent Feature 2 shows strong negative weights for danceability (-0.602) and speechi-
ness (-0.566), suggesting this dimension identifies songs that are less rhythmically dance-
oriented and more melodically focused.

• Latent Feature 3 emphasizes tempo (0.658) and speechiness (0.542), likely capturing
the rhythmic and vocal delivery elements that are particularly important in genres like
R&B and Rap.

• Latent Feature 4 has heavy negative weighting for liveness (-0.784) and positive weight-
ing for tempo (0.449).

• Latent Feature 5 strongly downweights instrumentalness (-0.847), suggesting it identifies
songs that are more vocal-focused.

4.3 Recommendation Results

When we process our input playlist through the algorithm using these new latent features, it
generates the following collection of songs:

Song: Slime You Out (feat. SZA), Artist: Drake, SZA
Song: It’s Nice To Have A Friend, Artist: Taylor Swift
Song: All The Stars (with SZA), Artist: Kendrick Lamar, SZA
Song: Cold (feat. Future), Artist: Maroon 5, Future
Song: Baby Pluto, Artist: Lil Uzi Vert
Song: Make Me (Cry), Artist: Noah Cyrus, Labrinth
Song: when the party’s over, Artist: Billie Eilish
Song: MORE & MORE, Artist: TWICE
Song: What Lovers Do (feat. SZA), Artist: Maroon 5, SZA
Song: pete davidson, Artist: Ariana Grande
Song: Hold On, Artist: Adele
Song: You Are The Reason, Artist: Calum Scott
Song: Winter Wonderland, Artist: Tony Bennett
Song: City Of Stars - From ”La La Land” Soundtrack, Artist: Ryan Gosling, Emma Stone
Song: I Hate U, Artist: SZA
Song: when the party’s over - Recorded at Spotify Studios NYC, Artist: Lewis Capaldi
Song: What Lovers Do (feat. SZA), Artist: Maroon 5, SZA
Song: when the party’s over, Artist: Billie Eilish
Song: Calling (Spider-Man: Across the Spider-Verse) (Metro Boomin & Swae Lee, NAV, feat.
A Boogie Wit da Hoodie), Artist: Metro Boomin, Swae Lee, NAV, A Boogie Wit da Hoodie
Song: Primera Cita, Artist: Carin Leon
Song: RISE! (feat. DAISY WORLD), Artist: Tyler, The Creator, DAISY WORLD

4.4 Analysis of Results

The recommendations show several patterns revealed by the SVD-based approach:

• Diverse genre representation: Unlike the purely SZA-focused input playlist, our rec-
ommendations include artists from various genres that still yield mostly similar musical
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feeling (according to our latent features). Such analysis included pop (Taylor Swift, Ar-
iana Grande), singer-songwriter (Billie Eilish, Adele), soundtrack music (Ryan Gosling,
Emma Stone), and even Latin music (Carin Leon). It is important to note that this
came from using an overall best-similarity approach as to prioritizing one most similar
song per song in the input playlist. Note: The second method yielded mainly SZA based
results, which intuitively makes sense given a song sang by SZA is most likely to be more
one-to-one similar to another song sang by SZA

• Selective artist continuity: In contrast to the first bullet point, While the input playlist
was dominated by SZA, the recommendations maintain some SZA tracks (I Hate U, What
Lovers Do, All The Stars) but avoid overwhelming the results with a single artist, demon-
strating the algorithm’s ability to focus on sound qualities rather than simply matching
artist names.

These results highlight how our SVD-based recommendation system can discover non-obvious
musical similarities that analyze music beyond conventional genre classifications. By decompos-
ing songs into latent features, we identify connections based on deeper musical characteristics
rather than surface-level data.

5 Technical Implementation Details

**Note: Nearly all of the mathematical functions were self-made with limited use of libraries.**

5.1 Code

View the full source code
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